Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Trial manufacturing of copper-carbon steel composite overpack

*; *; Tanai, Kenji

JNC TN8400 99-049, 94 Pages, 1999/11

JNC-TN8400-99-049.pdf:6.63MB

This paper reports the results of design analysis and trial manufacturing of copper-carbon steel composite overpacks. The overpack is one of the key components of the engineered barrier system, hence, it is necessary to confirm the applicability of current technique in their manufacture. The Copper-Carbon steel composite overpack consists of a double container, an outer vessel made of oxygen-free, high-purity copper as the corrosion allowance material, and an inner vessel made of carbon steel as the pressure-resistant material. The trial manufacturing in this time, only the copper outer vessel has been fabricated. Both oxygen-free copper and oxygen-free phosphorus copper were used as materials for the outer vessel. For the shell and bottom portion, these materials were formed integrally by a backward extrusion method. For sealing the top cover plate to the main body, an electron-beam welding method was applied. After manufacturing, mechanical testing of specimens from the copper vessels were carried out. It was confirmed that current technique has sufficient feasibility to manufacture outer vessel. In addition, potential for irradiation embrittlement of the inner carbon-steel vessel by irradiation from vitrified waste over the life time of the overpack has been analyzed. It was shown that the small degree of irradiation embrittlement gives no significant impact on the pressure resistance of the carbon-steel vessel. Future research and development items regarding copper-carbon steel composite overpacks are also discussed.

JAEA Reports

Designstudy on advanced nuclear fuel recycle system; Conceptual design study of recycle system using molten salt

; Kakehi, Isao; Moro, Satoshi; ; ; ;

JNC TN9400 98-003, 422 Pages, 1998/10

JNC-TN9400-98-003.pdf:21.36MB

Advanced recycle system engineering group of OEC has being carried out a design study of the advanced nuclear fuel recycle system using molten salt (electro-metallurgical process). This system is aiming for improvements of fuel cycle economy and reduction of environmental burden (MA recycles, Mimmum of radioactive waste disposal), and also improvement of safety and nuclear non-proliferation. This report describes results of the design study that has been continued since December 1996. (1)A design concept of the advanced nuclear fuel recycle system, that is a module type recycle system of pyrochemical reprocessing and fuel re-fabrication was studied. The module system has advantage in balance of Pu recycle where modules are constructed in coincidence with the construction plan of nuclear power plants, and also has flexibility for technology progress. A demonstration system, minimum size of the above module, was studied. This system has capacity of 10 tHM/y and is able to demonstrate recycle technology of MOX fuel, metal fuel and nitride fuel. (2)Each process of the system, which are pyrochemical electrorefining system, cathode processor, de-cladding system, waste disposal system, etc., were studied. In this study, capacity of an electrorefiner was discussed, and vitrification experiment of molten salt using lead-boric acid glass was conducted. (3)A hot cell system and material handling system of the demonstration system was studied. A robot driven by linear motor was studied for the handling system, and an arrangement plan of the cell system was made. Criticality analysis in the cell system and investigation of material accountancy system of the recycle plant were also made. This design study will be continued in coincidence with design study of reactor and fuel, aiming to establish the concept of FBR recycle system.

JAEA Reports

None

PNC TJ2068 94-002, 70 Pages, 1994/03

PNC-TJ2068-94-002.pdf:13.7MB

None

3 (Records 1-3 displayed on this page)
  • 1